Energy-consumption prediction of Genetic Programming Algorithms using a Fuzzy Rule-Based System
Energy awareness has gained momentum over the last decade in the software industry, as well as in environmentally concious society. Thus, algorithm designers and programmers are paying increasing attention this issue, particularly when handheld devices are considered, given their battery-consuming characteristics. When we focus on Evolutionary Algorithms, few works have attempted to study the relationship between the main features of the algorithm, the problem to be solved and the underlying hardware where it runs. This work presents a preliminary analysis and modeling of energy consumption of EAs. We try to predict it by means of a fuzzy rule-based system, so that different devices are considered as well as a number of problems and Genetic Programming parameters. Experimental results performed show that the proposed model can predict energy consumption with very low error values.